
Journal of Supercomputing manuscript No.
(will be inserted by the editor)

A Case Study in Multi-core Parallelism for the
Reliability Evaluation of Composite Power Systems

Robert C. Green II · Vishakha Agrawal

Received: date / Accepted: date

Abstract The probabilistic evaluation of composite power system reliabil-
ity is an important but computationally intense task that requires the sam-
pling/searching of a large search space. While multiple methods have been used
for performing these computations, a remaining area of research is the impact
that modern platforms for parallel computation may have on this computa-
tion. Studies have been performed in the past, but they have been primarily
limited to cluster-based computing. In addition, the most recent works in this
area have used outdated technology or been evaluated using smaller test sys-
tems. In the modern era, a wide variety of platforms are available for achieving
parallelism in computation including options like multi-core processors, clus-
ters, and accelerators. Each of these platforms provides unique opportunities
for accelerating computation and exploiting scalability.

In order to fill this gap in the research, this study implements and eval-
uates two methods of parallel computation – Batch Parallelism and Pipeline
Parallelism – using a multi-core architecture in a cloud computing environ-
ment on Amazon Web Services (AWS) using up to 36 virtual compute cores.
Further, the methodologies are contrasted and compared in terms of computa-
tion time, speedup, efficiency, and scalability. Results are collected using IEEE
Reliability Test Systems and speedups upwards of 5x are demonstrated across
multiple test systems.

Keywords Power System Reliability · OpenMp · Pipeline parallelism ·
Monte Carlo Simulations · Multicore · Batch Parallelism

This is a pre-print of an article published in The Journal of Supercompuing. The final
authenticated version is available online at: https://doi.org/10.1007/s11227-017-2073-z

R. Green and V. Agrawal
Dept. of Computer Science
Bowling Green State University
Bowling Green, OH 43402
E-mail: {greenr,vagrawa}@bgsu.edu



2 Robert C. Green II, Vishakha Agrawal

1 Introduction

The ability to quickly estimate the reliability of power system is an important
aspect of the modern power grid, that often plays a role in choices regarding
investments, power generation, operating costs, etc. [21] As the power system
grows, operating constraints increase, making the process of reliability evalua-
tion more computationally intensive, particularly as this problem suffers from
curse of dimensionality [11]. As an example, the test systems currently used
for research have state space sizes ranging from 232 to 299 while real-world
systems are many times as large. To combat these issues, many paths have
been followed ranging from the use of non-sequential Monte Carlo Simulation
(MCS) to the inclusion of Population-based Metaheuristics (PBMs) [11] and
high performance computing (HPC) [8,9]. For those works focusing squarely
on the use and application of HPC, the main focus has been on the use of clus-
ter computing using various master-slave configurations [5,6,4,13,17] or grid
computing [2]. Throughout these works, there is a lack of exploration of mod-
ern, or multi-core centric, architectures or unique algorithmic implementations
(almost all of these works focus on the well-known master-slave paradigm) [8,
9]. In order to address these shortcomings in the literature, this study explores
the impacts and nuances of pipeline and batch parallel implementations of non-
sequential MCS using multi-core architectures in a cloud-based environment
for evaluating the reliability of the composite power system in a probabilistic
manner. As such, this work is substantially different from previous works in
three main ways: 1) A multi-core architectures, as opposed to cluster and grid
computing, are the focus, 2) A batch and pipeline parallel methodology is im-
plemented and evaluated, and 3) All benchmarks are run using cloud-based
resources as opposed to locally built clusters or compute resources.

The remainder of this paper is structured as follows: Section 3 discusses
the parallelization methodology and its implementation; Section 4 describes
the results obtained from pipeline parallelism and batch parallelism; Section
4.3 discusses the results; and Section 5 summarizes the paper while presenting
conclusions and future work.

2 Background

Background information related to this study include the fundamentals of
MCS as applied to the probabilistic reliability evaluation of composite power
systems as well as a review of those methods that have previously leveraged
parallel computation when investigating and extending this algorithm.

2.1 Reliability Analysis of Composite Power Systems

MCS, and particularly non-sequential MCS, is often times the algorithm of
choice for evaluating composite power system reliability. The algorithm itself



Multi-Core Reliability Evaluation of Composite Power Systems 3

relies on three main steps – Sampling, classification, and determining conver-
gence. In a composite power system, the state space is made up of all sources
of generation and transmission, with the state of each being represented as
a “1” for functioning and a “0” when failing. The combination of individual
device states compose a single state, while all states that may exist in a given
system compose the entire state space.

During the sampling stage, states are sampled using pseudo-random num-
bers and the forced outage rate, or (FORi), of each component, i, which is
common probability measure referring to how often a single device may fail.
Sampling a state, S, for each device/dimension, i, entails generating a random
number, ri that is compared to the FORi according to (1). The concatenation
of these results leads to the complete binary representation of a single state.

Si =

{
0 ri ≤ FORi

1 otherwise
(1)

Once sampled, a DC Optimal Power Flow (OPF) may be used to classify a
state as a failed or a functioning state [18,22], where the goal of the DC-OPF
is to minimize load curtailment.

After classification, the reliability of the system can be evaluated using a
common measure known as LOLP , or loss-of-load probability. To accomplish
this, LOLP and V (LOLP ) (variance of LOLP ) during each iteration and,
once a preset limit is reached, the algorithm terminates. This is shown in (2)
- (5), where K is the number of total states sampled.

LOLP =
1

K

K∑
x=1

Sx (2)

V (LOLP ) =
1

K
(LOLP − LOLP 2) (3)

σ =

√
V (LOLP )

LOLP
(4)

Sx =

{
1 loss-of-load

0 otherwise
(5)

2.2 Parallel Computing in Composite Power System Reliability Evaluation

The majority of the work relating HPC methodologies to the probabilistic
evaluation of composite power system reliability using non-sequential MCS is
encompassed in seven specific works [13,3,5,6,4,2,10], though one additional
work may be considered if including parallel PBMs and their applications in
this area [23,10].

The work in [13] is the fundamental basis of study in this area. In this work,
three types of master-slave topology are implemented and evaluated using MPI



4 Robert C. Green II, Vishakha Agrawal

on a nCUBE processors. Insights are discussed regarding implications of the
model and the impact of random number generation.

This work is continued by Borges et. al [3,5,6,4], though only two of
the works focus on non-sequential MCS ([3,6]). These works evaluate course-
grained methods using asymmetric parallelism. The developed algorithm is
applied to five test systems (RTS79, NBS, NNE, SUL, and SE) using a IBM
RS/6000 SP with 4 POWER2 processors. Speedups ranging from 1x–10x are
achieved.

Considering modern parallel computing paradigms, the work in [2] develops
a grid focused on the reliability and security evaluation of power systems. In
this study results obtained from a prototype system are reported, though are
centered on small signal stability analysis and not on reliability evaluation

While note purely MCS, the progress in [23] focuses on parallel implemen-
tations of a GA for calculating reliability indices. The multi-deme method is
used. The algorithms is applied to the RTS79 test system using 3, 7, and 15
processors. Resultant speedups range from 2 to 12.

The work continued in [10] extends the Intelligent State Space Pruning
(ISSP) algorithm to a parallel computing platform using MPI. The methodol-
ogy leverages population-based metaheuristics, assigning different populations
to different compute cores. The populations pass various members and other
information, resulting in speedups from 1x-10x.

3 Proposed Methods

In this study, two methods – batch parallelism and pipeline parallelism – are
proposed as described in the following two sections. Under both methods,
thread level parallelism is used to divide the necessary computation into iso-
lated tasks. As previously noted, these methods differ from the current state-
of-the art as they are multi-core centric, leverage new methodologies that are
different from those previously evaluated, and are evaluated using cloud-based,
virtualized resources.

3.1 Batch Parallelism

Under this paradigm, the computational tasks present under MCS are divided
on a per thread basis where N is the number of threads allocated. Each thread
is also assigned a batch size, B, that informs each thread with regards to how
many states it should Generate and then Classify. This method is graphically
depicted in Fig. 1. After each thread Generates and Classifies all of the neces-
sary states, all results are merged and the results are evaluated for convergence.
If not converged, the algorithm launches another N threads that once again
classify with the given value of B.



Multi-Core Reliability Evaluation of Composite Power Systems 5

Fig. 1 Proposed process for batch parallel methodology.

3.2 Pipeline Parallelism

This paradigm uses task level parallelism in order to spawn a number of threads
that continually perform all necessary tasks – Generation, Classification, and
Computation – in a pipelined matter. The fundamental advantage in using
this methodology is that those tasks that are more computationally intense are
able to use a larger number of threads. For instance, Classification is typically
computationally intense portion of the algorithm. This suggests that any given
Generation thread should be able to produce or sample states more rapidly
than any Classification thread can keep pace with. In order to reduce the
computation time required, additional Classification threads may be added,
allowing the sampled states to be processed more rapidly.

The number of threads performing each task are named as Ng for genera-
tion threads and Nc for classification threads. Computation threads require no
definition as, due to the sequential nature of the process(result of convergence
depends on previous iterations), the operation requires only a single thread.
The entirety of this process is detailed in Fig. 2.

Fig. 2 Proposed process for pipeline parallel methodology.

3.3 Evaluation Methodology

For evaluation, all values are reported as average values over at least ten trials.
In addition, various measures exist for the comparison of parallel algorithms,
the most common two being speedup and efficiency. Speedup is a well known
metric that is defined in (6) where T1 is the execution time on a single pro-
cessor, core, or node and Tm is the execution time on m processors, cores, or
nodes. As is shown in [1] this is not a valid comparison for non-deterministic



6 Robert C. Green II, Vishakha Agrawal

algorithms such as MCS algorithms. In light of this, mean parallel execution
time will be a better judge of algorithm improvement is shown in (7).

s =
T1
Tm

(6)

sm =
E[T1]

E[Tm]
(7)

Another calculation often used to evaluate the benefit of parallel algo-
rithms is the measure of efficiency [1]. This measure is defined in (8) and can
be considered as the speedup per processor, a normalization of the speedup
measure, or a measure of the effectiveness of resource usage and scalability. In
this measure, an efficiency of one corresponds to a linear speedup while any
value exceeding one is super-linear and any value less than one is sub-linear.

em = sm/m (8)

4 Results

For all results, evaluation occurred using a c4.8xlarge compute optimized EC2
instance on Amazon AWS which consists of 36 virtual CPUs, 60 GB of RAM,
and 8 GB of solid state device (SSD) storage. The instance was initialized using
Ubuntu Server 14.04 (64-bit). To achieve parallelism in both the methods,
OpenMP [19] was used. OpenMP is an API which supports multi-platform
shared-memory parallel programming in C/C++ and FORTRAN. All trials
were run a total of 10 times and average values are reported in all cases.
In tables and figures, N refers to the number of threads used in batch-level
parallelism, B refers to batch size.In pipeline parallelism Ng refers to the
number of generation threads, and Nc refers to the number of classification
threads and only a single thread was ever used for performing the calculations
involved in determining convergence. The software and all generated data used
for this study was developed by the author and is available for free at Gitlab
1.

Simulations were completed using three standard test systems: RTS79 [14],
MRTS [7,20] and RTS96 [12]. The IEEE Reliability test system, RTS79 con-
tains 24 buses, 38 transmission lines, and 32 generating units with 10 buses
connected to generators, and 38 transmission lines and 5 transformers. The
annual peak load for the system is 2,850 MW and the total generating capacity
is 3,405 MW. The MRTS (Modified Reliability Test System) is the modified
version of RTS79.It is modified such that capacity of its generating units is
twice of as that of RTS79 and annual peak load is 1.8 times of that of RTS79.
As a result, annual peak load is 5,130 MW and total generating capacity is
6,810 MW. The RTS96 contains three interconnected areas, where each area
is RTS79, connected via 5 tie lines. The system has 73 buses, 120 transmission

1 https://gitlab.com/MCS-Power-System-Reliability/mcs-pruning



Multi-Core Reliability Evaluation of Composite Power Systems 7

lines, and 96 generating units. Annual peak load of the system is 8,550 MW
and total generating capacity is 10,215 MW.

Results from all trials were also submitted to a Wilcoxon rank-sum test
as implemented by SciPy [15]. This test was used to determine the statistical
significance of 1) Results in terms of computation time and 2) Resultant LOLP
values. A value of p ≤ 0.05 would suggest that the computation times were
drawn from different distributions. In terms of LOLP, a p > 0.05 would suggest
that LOLP values achieved were statistically similar. In any case, the p values
referring to time will be referenced as ptime and the p value concerning LOLP
will be referred to as pLOLP .

4.1 Batch Parallelism

For the Batch Parallel method, the Wilcoxon rank-sum test indicated that 22
RTS79 experiments and 17 MRTS experiments produced computation times
that were possibly not statistically significant, achieving a ptime value greater
than 0.05. This was expected as some combinations of threads and batch size
should produce computation times similar to that of the serial implementation.

Considering pLOLP , 58 RTS79 experiments, 200 MRTS experiments, and
126 RTS96 experiments resulted in values suggesting that the pLOLP achieved
may vary from that achieved by the serial implementation. On manual in-
spection, it was easily seen that though the possibility for significant variation
existed, the values did not differ substantially.

4.1.1 Computation Time

Results regarding computation time for the batch parallel method are shown in
Figs. 3 - 5. Generally, these results are as expected. For the RTS79 and MRTS
systems a very similar trend is shown where, initially, the increase in number
of threads and batch size results in a decrease in computation time. As the
number of threads and the batch size are increased, the combinations result in
extended computation times. This is expected for systems such as this as they
require so few samples to converge. For instance, the RTS79 requires roughly
18,000 samples to achieve convergence. Considering a batch size of 10,000 using
35 threads samples roughly 350,000 states – a sample size that is unnecessary
and equivalent to roughly 20 times more samples than are needed. From Fig.
3 it is obvious that this situation results in the largest of computation times.
This trend is similar for the MRTS and RTS96 systems, though the results are
generally more exaggerated for the RTS96.

Optimal values occur for RTS79, MRTS, and RTS79 at thread–batch com-
binations of 12/1,500, 11/4,500, and 33/3,500 where computation times (in
seconds) of 0.51 (vs. 2.25), 1.44 (vs. 5.83), and 8.24 (vs. 48.21) are achieved.



8 Robert C. Green II, Vishakha Agrawal

Fig. 3 Required computation time for various combinations of Number of Threads and
Batch Size for RTS79 using Batch Parallelism.

Fig. 4 Required computation time for various combinations of Number of Threads and
Batch Size for MRTS using Batch Parallelism.

Fig. 5 Required computation time for various combinations of Number of Threads and
Batch Size for RTS96 using Batch Parallelism.

4.1.2 Speedup & Efficiency

Results regarding speedup for the batch parallel method are shown in Figs. 6
- 8. The same general trend is shown for all three systems – an initial increase
in speedup as the number of threads and batch sized are increased followed by
various combinations of threads and batch sizes that produce mixed, yet near
optimal, results, which are finally followed by a continual decrease in speedup.
As expected, the optimal combination of threads and batch size is found in an
area with a middle ground that does not simply maximize either parameter.
This results in optimal speedup values of 4.36, 4.04, and 5.85 for the RTS79,
MRTS, and RTS96, respectively, using batch sizes of 9,000, 4,500, and 3,500.



Multi-Core Reliability Evaluation of Composite Power Systems 9

Efficiency for the batch parallel method is shown in Figs. 9 - 11. It is inter-
esting to note that for all three systems a high level of efficiency (1.07, 0.99,
and 1.12 for the RTS79, MRTS, and RTS96) is obtained using a single thread
with a batch size of 9,000 or 2,000 for the RTS79, 1,000 for the MRTS, and
3,000 for the RTS96 (these values are shown in tabular format in Table 1). This
suggests that the batch parallel methodology reaches its ideal performance in
terms of utilization at a low thread count, though not in terms of time reduc-
tion. This is reasonable as the addition of either additional threads or the shift
to larger batch sizes increases either the overhead required for parallel com-
putation or the computation required of an individual thread. Again, looking
at the figures, it can be noted that there is a general trend of a decrease in
efficiency as 1) The number of threads is increased and 2) The batch size is
enlarged for any given number of threads. This suggests that as both number
of threads and/or batch size is increased, the utilization of resources by the
batch parallel methodology slowly reduces, though this does not necessarily
suggest that the speedup must decrease – it could only increase more slowly.

System Threads Batch Size Time (s) Speedup Efficiency
RTS79 12 1,500 0.5162 4.3596 0.3633
RTS79 1 9,000 2.0874 1.078 1.078
MRTS 11 4,500 1.4416 4.0449 0.3677
MRTS 1 1,000 5.8383 0.9988 0.9988
RTS96 33 3,500 8.2404 5.8502 0.1772
RTS96 1 3,000 43.2123 1.1156 1.1156

Table 1 Statistics regarding the optimal combination of threads and batch size for achieving
maximum Speedup and Efficiency using the batch parallel method.

Fig. 6 Speedup achieved for various combinations of Number of Threads and Batch Size
for RTS79 using Batch Parallelism.

4.2 Pipeline Parallelism

For the Pipeline Parallel method, the Wilcoxon rank-sum test indicated that
seven RTS79 experiments, nine MRTS experiments, and 2 RTS96 experiments



10 Robert C. Green II, Vishakha Agrawal

Fig. 7 Speedup achieved for various combinations of Number of Threads and Batch Size
for MRTS using Batch Parallelism.

Fig. 8 Speedup achieved for various combinations of Number of Threads and Batch Size
for RTS96 using Batch Parallelism.

Fig. 9 Efficiency achieved for various combinations of Number of Threads and Batch Size
for RTS79 using Batch Parallelism.

Fig. 10 Efficiency achieved for various combinations of Number of Threads and Batch Size
for MRTS using Batch Parallelism.



Multi-Core Reliability Evaluation of Composite Power Systems 11

Fig. 11 Efficiency achieved for various combinations of Number of Threads and Batch Size
for RTS96 using Batch Parallelism.

produced computation times that were possibly not statistically significant,
achieving a ptime values greater than 0.05. This was expected as some combi-
nations of generation and classification threads should produce computation
times similar to that of the serial implementation.

Considering pLOLP , four RTS79 experiments, 32 MRTS experiments, and
42 RTS96 experiments resulted in values suggesting that the pLOLP achieved
may vary from that achieved by the serial implementation. On manual in-
spection, it was easily seen that though the possibility for significant variation
existed, the values did not differ substantially.

4.2.1 Computation Time

Results regarding computation time for the pipeline parallel method are shown
in Figs. 12 - 14 where the results are as expected. The use of various combi-
nations of generation and classification threads leads to reduced computation
time as the number of each type of thread increases concurrently. Note that
all methods graphically show a “dip” near their optimal values (using 1 gen-
eration thread for all methods). As is known, this clearly demonstrates that
the portion of calculation requiring extended computation lies solely in the
classification of states.

Optimal values for computation time occur for RTS79, MRTS, and RTS79
at Generation/Classification thread combinations of 1/15, 1/15, and 1/35
where computation times (in seconds) of 0.0.43 (vs. 2.25), 1.23 (vs. 5.83),
and 8.68 (vs. 48.21) are achieved.

4.2.2 Speedup & Efficiency

Results regarding speedup and efficiency for the the pipeline parallel method
are shown in Figs. 15 - 20. For the RTS79 and MRTS, a trend that clearly
mimics that of computation time is shown, with a steep peak begin graphically
evident at the optimal combination of generation and classification threads
that then quickly decreases for other combinations, eventually leveling off
near a speedup value of two. The RTS96, on the other hand, demonstrates a
somewhat different trend, where combinations of generation and classification



12 Robert C. Green II, Vishakha Agrawal

Fig. 12 Required computation time for various combinations of Generation and Computa-
tion threads for RTS79 using Pipeline parallelism.

Fig. 13 Required computation time for various combinations of Generation and Computa-
tion threads for MRTS using Pipeline parallelism.

Fig. 14 Required computation time for various combinations of Generation and Computa-
tion threads for RTS96 using Pipeline parallelism.

threads result in a nearly constant speedup of roughly five, though the optimal
speedup and computation time achieved are still obvious with one generation
and 35 classification threads. This behavior is likely due to the large number
of samples required by the RTS96 system to achieve convergence. This results
in optimal speedup values of 5.22, 4.75, and 5.55 for the RTS79, MRTS, and
RTS96, respectively.

In terms of efficiency, Figs. 18-20 show that for the RTS79 and MRTS
systems, efficiency is maximized using generation/classification thread combi-
nations of 1/4 and 1/5, resulting in efficiency values of 0.55 and 0.49. This
is in opposition to the combinations of threads leading to optimal speedups
that were listed previously. The RTS96 system shows similar results, yielding
a maximal efficiency of 0.65 at a combination of 1/4 generation/classification



Multi-Core Reliability Evaluation of Composite Power Systems 13

threads which is, again, in contrast to the combination leading to optimal
time reduction and speedup as listed previously. The details of this data are
also shown in Table 2. The overall trend for efficiency in all cases related to
pipeline parallelism suggests that there is an increase in utilization by adding
a reasonable number of threads for the classification task, though adding too
many classification threads begins a decrease in efficiency. In other words, as
more classifier threads are added, the benefit of each addition is reduced, even-
tually leading to a decline in resource utilization. In addition, the number of
generation threads should be held at one.

Fig. 15 Speedup achieved for various combinations of Generation and Computation threads
for RTS79 using Pipeline parallelism.

Fig. 16 Speedup achieved for various combinations of Generation and Computation threads
for MRTS using Pipeline parallelism.

System Gen. Threads Class. Threads Time (s) Speedup Efficiency
RTS79 1 4 0.81 2.77 0.55
RTS79 1 15 0.43 5.22 0.33
MRTS 1 15 1.23 4.75 0.30
MRTS 1 5 2.00 2.92 0.49
RTS96 1 35 8.68 5.55 0.15
RTS96 1 4 14.72 3.27 0.65

Table 2 Statistics regarding the optimal combination of threads and batch size for achieving
maximum Speedup and Efficiency using the pipeline parallel method.



14 Robert C. Green II, Vishakha Agrawal

Fig. 17 Speedup achieved for various combinations of Generation and Computation threads
for RTS96 using Pipeline parallelism.

Fig. 18 Efficiency achieved for various combinations of Generation and Computation
threads for RTS79 using Pipeline parallelism.

Fig. 19 Efficiency achieved for various combinations of Generation and Computation
threads for MRTS using Pipeline parallelism.

Fig. 20 Efficiency achieved for various combinations of Generation and Computation
threads for RTS96 using Pipeline parallelism.



Multi-Core Reliability Evaluation of Composite Power Systems 15

4.3 Discussion

The work presented in previous sections clearly demonstrates that the use
of a modern, multi-core, cloud-based system of parallel computation results
in speedups of roughly 4x-5x when considering the probabilistic evaluation of
composite power system reliability. Yet, when considering both methodologies,
two key questions should be asked. First, “What is the optimal configuration
in order to achieve the most significant performance?”, and, second, “How well
will either of these algorithms scale?”

Optimal configuration concerns itself with the selection and organization
of the number and types of threads used for processing. When considering the
maximum speedups obtained via batch parallelism at 12, 11, and 33 threads
using a batch size of 1,500, 4,500, and 3,500, respectively, it can safely be
assumed that a key to achieving significant speedups is using a relatively small
batch size as opposed to a larger batch size. This follows common sense as,
when running multiple threads, utilizing a smaller batch size results in short,
as opposed to long, bursts of computational work, leading to improved run
times. It should also be noted that, in all cases, the combination of threads
used and batch size results in a number of samples that is slightly greater
than those required for this in the serial case (e.g. 3, 500×33 = 115, 000 which
is roughly the number of samples required for convergence when evaluating
RTS96). This suggests that, if it is possible, values should be chosen for number
of threads used and batch size that result in sampling near the required number
of samples. Overall, the results for the batch parallel method are as expected.

Upon inspecting the results of the Pipeline parallel method, it appears that
the key to achieving significant speedup is using a very small number of threads
for state generation (maximum speedup and maximum efficiency were both
achieved when using only a single thread) and an appropriate, but typically
small, number of threads for classification. This is a sensible conclusion as state
generation is not a computationally intense process, allowing a single thread
to generate a large number of states rapidly. On the other hand, the measured
result is not expected. One would expect that the addition of generation and
classifier threads would reduce time and increase speedup due to the rather
parallel nature of the given problem. This should occur as more threads of
each type should be able to produce and process a larger number of states
more rapidly. Yet, it does not. Instead, there is an eventual plateau in time
reduction, speedup, and efficiency for all three test systems. As the problem is
known to be highly parallel, this suggests that the lack of continued speedup
is either due to overhead – issues in synchronization between threads that
could be optimized in the future – or that the parallel nature has been fully
exploited at this problem size, leading to the need for larger test systems to
further exploit the benefits of parallelization.

Considering the scalability of both methodologies, the major concern is
formed around how each algorithm will scale with 1) Additional compute re-
sources, 2) Increased problem/system size, and 3) A simultaneous increase in
computational resources and problem/system size. For all three of these cases,



16 Robert C. Green II, Vishakha Agrawal

the trends in efficiency in Figs. 9-11 and Figs. 18-20 are of utmost interest. For
the batch parallel method, the general trend is that efficiency decreases while
either the number of threads used or the batch size is increased. This suggests
that the method, while useful, may not scale well as the addition of threads or
batch size leads to decreased efficiency, or utilization of resources. This makes
sense based on the comments on optimal configuration previously made – if a
large batch size is coupled with an excessive thread count, overhead is added
to the process. In considering the pipeline parallel method, the trend is simi-
lar to that of the batch parallel method, though there is an initial increase in
efficiency (and decrease in computation time) as the number of classification
threads is initially increased to between five and ten when considering all test
systems.

In order to further examine the issue of scalability and determine if issues
regarding scalability are due to overhead/implementation or a lack of paral-
lelism in the problem, the Karp-Flatt metric [16] is introduced as shown in
(9). While this metric provides an experimental method of estimating the se-
rial portion of a program, km, it also provides insight into the source causes
of scalability issues. For instance, if the Karp-Flatt metric grows along with
the total number of threads used, overhead is typically the issue blocking scal-
ability. If this same metric acts otherwise when an increase in total number
of threads is introduced, then the issue is typically related to the portion of
the problem which is inherently sequential. For the batch parallel method,
the Karp-Flatt metric is shown graphically in Figs. 21 - 23. As the trend of
the metric is continually increasing (while the efficiency decreases), it can be
assumed that the scalability issue related to the batch parallel method is one
of overhead in computation, possibly due to synchronization between threads
or the additional (and excessive) computational burden created by increased
batch sizes.

Considering the pipeline parallel method, the Karp-Flatt metric is depicted
in Figs. 24 - 26. In all of these figures, the initial trend is a decrease in the
Karp-Flatt metric, suggesting that an initial increase in classifier threads leads
to increased parallelism (i.e. the estimated serial portion of the code is smaller).
This matches trends seen in terms of speedup and efficiency. In all cases there
is a continual trend towards a slow increase after this initial decrease. As
with the batch parallel method, this suggests that any scalability issues that
occur above this point are likely due to overhead in computation – potentially
interactions with the queue structures that allow generator threads, classifier
threads, and the convergence calculations to share data.

km =
1
sm

− 1
m

1 − 1
m

(9)



Multi-Core Reliability Evaluation of Composite Power Systems 17

Fig. 21 Karp-Flatt metric for various combinations of Number of Threads and Batch Size
for RTS79 using Batch Parallelism.

Fig. 22 Karp-Flatt metric for various combinations of Number of Threads and Batch Size
for MRTS using Batch Parallelism.

Fig. 23 Karp-Flatt metric for various combinations of Number of Threads and Batch Size
for RTS96 using Batch Parallelism.

Fig. 24 Karp-Flatt metric for various combinations of Generation and Computation
threads for RTS79 using Pipeline Parallelism.



18 Robert C. Green II, Vishakha Agrawal

Fig. 25 Karp-Flatt metric for various combinations of Generation and Computation
threads for MRTS using Pipeline Parallelism.

Fig. 26 Karp-Flatt metric for various combinations of Generation and Computation
threads for RTS96 using Pipeline Parallelism.

5 Conclusion and Future Work

This work has introduced both pipeline and batch parallelism using OpenMP
for the probabilistic reliability evaluation of composite power systems. The
newly applied algorithms were benchmarked and analyzed using a cloud-based
system and all source code has been made publicly available. Results show that
these methodologies, while both effective, may result in a speedup upwards of
5x by choosing appropriate batch sizes or the proper combination of thread
types. In terms of batch parallelism, this choice should accurately reflect any
knowledge related to the convergence of the system, for instance how many
iterations are required for convergence. For pipeline parallelism, these choices
should generally use a single generator thread and roughly four to five classifier
threads. While demonstrating improved results in terms of computation time
and speedup, the algorithms due suffer from some issues related to scalability,
but based on analysis using both efficiency and the Karp-Flatt metric, it can
be shown that these inefficiencies are generally due to computational overhead,
an issue that the authors hope to address in the future.

Future extensions of this work may include 1) Investigations into improved
data sharing, implementation methods, and optimization to ease computa-
tional overhead and increase performance of the proposed method, 2) Imple-
mentation of similar approaches using MPI or a hybrid of OpenMP and MPI,
3) Implementing the algorithms using various accelerators, 4) Evaluation of the



Multi-Core Reliability Evaluation of Composite Power Systems 19

proposed methods using larger computational resources, and 5) The extension
of the methodologies to larger test systems.

Acknowledgements This work was supported in part by an Amazon Web Service (AWS)
in Education Research Grant award.

References

1. Alba, E., Luque, G.: Evaluation of parallel metaheuristics. In: Parallel Problem Solving
From Nature, pp. 9–14. Reykjavik, Iceland (2006)

2. Ali, M., Dong, Z.Y., Li, X., Zhang, P.: RSA-Grid: A Grid Computing based Framework
for Power System Reliability And Security Analysis. In: IEEE/PES General Meeting,
pp. 1–7. Montreal, CA (2006)

3. Borges, C., Falcão, D.: A parallelisation strategy for power systems composite relia-
bility evaluation. In: V. Hernández, J. Palma, J. Dongarra (eds.) Vector and Parallel
Processing, pp. 640–651. Springer Berlin / Heidelberg (1999)

4. Borges, C., Falcao, D.: Power system reliability by sequential monte carlo simulation on
multicomputer platforms. In: J. Palma, J. Dongarra, V. Hernández (eds.) Vector and
Parallel Processing — VECPAR 2000, pp. 242–253. Springer Berlin / Heidelberg (2001)

5. Borges, C., Falcao, D., Mello, J., Melo, A.: Composite reliability evaluation by sequential
monte carlo simulation on parallel and distributed processing environments. IEEE
Transactions on Power Systems 16(2), 203–209 (2001)

6. Borges, C.L.T., Falcao, D.M., Mello, J.C.O., Melo, A.C.G.: Concurrent composite reli-
ability evaluation using the state sampling approach. Electric Power Systems Research
57(3), 149–155 (2001)

7. EPRI: Final report on research project 2473-10. Tech. rep., EPRI (1987)
8. Green, R., Wang, L., Alam, M.: High performance computing for electric power systems:

Applications and trends. In: IEEE/PES General Meeting, pp. 1–8. Detroit, Michigan
(2011)

9. Green, R., Wang, L., Alam, M.: Applications and trends of high performance computing
for electric power systems: Focusing on smart grid. IEEE Transactions on Smart Grid
4(2), 922–931 (2013)

10. Green, R., Wang, L., Alam, M., Singh, C.: Intelligent and parallel state space pruning
for power system reliability analysis using MPI on a multicore platform. In: IEEE
Conference on Innovate Smart Grid Technologies, pp. 1–8. Anaheim, California (2011)

11. Green, R., Wang, L., Alam, M., Singh, C.: Intelligent state space pruning for monte
carlo simulation with applications in composite power system reliability. Engineering
Applications of Artificial Intelligence 26(7), 1707–1724 (2013)

12. Grigg, C., Wong, P., Albrecht, P., et al.: The IEEE reliability test system-1996. IEEE
Transactions on Power Systems 14(3), 1010–1020 (1999)

13. Gubbala, N., Singh, C.: Models and considerations for parallel implementation of monte
carlo simulation methods for power system reliability evaluation. IEEE Transactions
on Power Systems 10(2), 779–787 (1995)

14. IEEE Committee Report: IEEE reliability test system. IEEE Transactions on Power
Apparatus and Systems PAS-98(6), 2047–2054 (1979)

15. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for
Python (2001–). URL http://www.scipy.org/

16. Karp, A.H., Flatt, H.P.: Measuring parallel processor performance. Com-
mun. ACM 33(5), 539–543 (1990). DOI 10.1145/78607.78614. URL
http://doi.acm.org/10.1145/78607.78614

17. Li, F.: Distributed processing of reliability index assessment and reliability-based net-
work reconfiguration in power distribution systems. IEEE Transactions on Power
Systems 20(1), 230–238 (2005)

18. Mitra, J., Singh, C.: Incorporating the DC load flow model in the decomposition-
simulation method of multi-area reliability evaluation. IEEE Transactions on Power
Systems 11(3), 1245–1254 (1996)



20 Robert C. Green II, Vishakha Agrawal

19. OpenMP Architecture Review Board: Openmp application program interface. Specifi-
cation (2008). URL http://www.openmp.org/mp-documents/spec30.pdf

20. Pereira, M., Balu, N.: Composite generation/transmission reliability evaluation. Pro-
ceedings of the IEEE 80(4), 470–491 (1992)

21. Prada, J.: The value of reliability in power systems-pricing operating reserves. Tech.
rep., Massachusetts Institute of Technology, Cambridge, Massachusetts (2005)

22. Singh, C., Mitra, J.: Composite system reliability evaluation using state space pruning.
IEEE Transactions on Power Systems 12(1), 471–479 (1997)

23. Wang, L., Singh, C.: Multi-deme parallel genetic algorithm in reliability analysis of
composite power systems. In: IEEE/PES Power Systems Conference and Exposition,
pp. 1–7. Seattle, Washington (2009)


