
Implementing Central Force Optimization on the
Intel Xeon Phi

Thomas Charest & Robert C. Green II
Dept. of Computer Science

Bowling Green State University
Bowling Green, OH 43402

Email: {charest,greenr}@bgsu.edu

Abstract—Central Force Optimization (CFO) is a fully de-
terministic population based metaheuristic algorithm based on
the analogy of classical kinematics. CFO yields more accurate
and consistent results compared to other population based
metaheuristics like Particle Swarm Optimization and Genetic
Algorithms, but does so at the cost of higher computational
complexity, leading to increased computational time. This study
presents a parallel implementation of CFO written in C++ using
OpenMP as implemented for both a multi-core CPU and the
Intel Xeon Phi Co-processor. Results show that parallelizing CFO
provides promising speedup values from 5-35 on the multi-core
CPU and 1-12 on the Intel Xeon Phi.

Index Terms—Central Force Optimization, Metaheuristic, Par-
allel, Xeon Phi, Multi-core

I. INTRODUCTION

Central Force Optimization (CFO) is a ‘deterministic multi-
dimensional search metaheuristic based on the metaphor of
gravitational kinematics’ [1]. A metaheuristic is a generalized
algorithm that finds the optimal values for a given optimization
problem, typically in the form of a function. Other popular
metaheuristics include Particle Swarm Optimization (PSO),
Ant Colony Optimization (ACO), and Genetic Algorithms
(GA). In contrast to CFO, other metaheuristics are typically
stochastic – having some inherent form of pseudo-random
behavior – while CFO is completely deterministic. The de-
terministic nature of CFO has resulted in many advantages
including the necessity of fewer function evaluations [2] as
the algorithm has no need of multiple runs.

Along with the advantages of determinism, the fundamen-
tal metaphor that CFO is based on (gravitational kinemat-
ics), comes with the challenge of increased computational
complexity, resulting in extended computation time. CFO’s
computation time has been addressed in the past through the
implementation of the algorithm on a Graphics Processing
Unit (GPU) [3]–[7]. While substantial, these studies lack the
evaluation of any implementation on a common, multi-core,
commodity processor or any other modern, parallel computing
platform. As such, this paper presents a case study regarding
the parallelization of the CFO algorithm using OpenMP on
two platforms – a typical multi-core processor and the Intel
Xeon Phi. The remainder of this paper is structured as follows:
Section II reviews the fundamentals of the CFO algorithm;
Section III discusses the implementation of this study; Section

IV show the results of this study; and Section V concludes this
study.

II. CENTRAL FORCE OPTIMIZATION

The fundamental, natural metaphor that is used in CFO is
that of probes flying through space. As these probes travel,
they are moved by gravitational forces of each other as well
as other encountered objects. The typical equations used to
model such behavior have been modified to accommodate this
metaphor computationally according to (1)–(3) where
F is force between two masses, M is mass, R is position,

A is acceleration, p is the current probe, k is another probe,
j is the current time step, Np is the total number of probes,
G is the gravitational constant, α and β are constants, and U
is unit step function.

F = Mk
j−1 −M

p
j−1 (1)

Apj−1 = G

Np∑
k=1,k 6=p

U(F) · Fα
(Rkj−1 −R

p
j−1)

|(Rkj−1 −R
p
j−1)|

(2)

Rpj = Rpj−1 +
1

2
Apj−1∆t2 (3)

Based on these equations, the fundamental CFO algorithm
can be described as follows [1], [3]:
• Initialize position of all probes
• Initialize acceleration of all probes
• Calculate initial fitness
• Record best fitness value
• Until stopping condition is met:

– Update each probe’s position
– Retrieve errant probes
– Calculate fitness values of each probe
– Update best fitness value
– Compute new acceleration for each probe

Of note is the step “Retrieve Errant Probes”. In this step, the
CFO algorithm prunes those probes whose position has gone
outside of the search space according to (4) and (5) where i is
the current dimension, Xmin and Xmax are vectors containing
minimum/maximum values in each dimension, and Frep is the
reposition factor, usually set to 0.5 [3].978-1-7281-7445-7/20/$31.00 © 2020 IEEE

DOI 10.1109/IPDPSW50202.2020.00091

R(p, i, j) = Xmin + Frep ∗ (R(p, i, j − 1)−Xmin(i)) (4)

R(p, i, j) = Xmax + Frep ∗ (Xmax(i)−R(p, i, j − 1)) (5)

This fundamental variant of CFO has also undergone a
variety of modifications (including Pseudo Random CFO (PR-
CFO) [8]–[10], Parameter Free CFO (PF-CFO) [11], Dis-
tributed, Multi-Objective CFO [12], and Adaptive CFO [13]),
been applied to a variety of problems (Antenna Benchmarking
[1], [14], [15], training Neural Networks [2], [12], [13], iris
recognition [13], and optimizing drinking water networks
[16]–[18]), and undergone analyses ([3].

In addition, the algorithm has previously been implemented
on Graphics Processing Units (GPUs) [3], [5], [6].These
studies have all proposed implementations of CFO on the
GPU, and some compare the performance of CFO to other
metaheuristics [6]. The benchmarking studies in [3] exhibit
speedup values in the range of 1 to 28, depending on certain
conditions, and further investigates the runtime bottlenecks
within the CFO algorithm. It is also noted that “updateAcceler-
ation” requires the highest average computation time (99.94%
of all time spent), as well as the highest complexity: N2

p×N2
d .

A. OpenMP

OpenMP (Open Multi Processing) is an open-source, cross-
platform API used to parallelize shared memory applications.
OpenMP is utilized in a C/C++ application by the use of
compiler directives. In parallel sections, OpenMP employs a
thread-based “fork-join” model [19], which spawns a linked
hierarchy of threads from a singular main thread. Once out of
a parallel section, these threads join back to a singular thread.
There are a number of performance considerations for shared
memory parallel applications, namely: shared data access,
shared memory synchronization, and sequential consistency.

B. Intel Xeon Phi

The Intel Xeon Phi is a PCI-e expansion card on the
host system that contains an autonomous many-core CPU.
To utilize this card, the host system can either transfer an
executable compiled for the architecture and run natively on
the Xeon Phi, or it could send work from the host CPU to the
coprocessor in an offloading model. The particular Xeon Phi
card studied by the author has 57 cores, with a suggested four
hardware threads per core for saturation, totaling an ideal 228
hardware threads.

III. METHODOLOGY

This study parallelizes an implementation of the CFO
algorithm written in C++ using OpenMP 1. These benchmarks
were first executed on a host system, and then compiled for
native execution on the Intel Xeon Phi coprocessor. The host
system features two Intel Xeon E5-2620 6-core processors,
running CentOS 6.7, and 32GB RAM.

1https://gitlab.com/central-force-optimization/
oo-central-force-optimization/tree/OpenMP

In the scope of CFO, whose processing is neatly segmented
into separate steps, it was imperative to identify portions of
the CFO algorithm that were the most computationally expen-
sive. Prior work on parallel implementations of CFO (in this
case, using CUDA) shows that the updateAcceleration
function takes 99.94% of CFO’s total computation time [3],
making it a prime candidate for parallelization.

For an effective parallel implementation that increases per-
formance, one must keep in mind a number of things: shared
data access, shared memory synchronization, and sequential
consistency. From the code snippet in Listing 1, one can see
each of these issues come to light. Although each probe’s
acceleration can be calculated independently in a parallel envi-
ronment, the shared memory access must be pointed out on the
calculateInfluence method call (which calculates the
influence between each probe i and j), and the initialization of
a probe’s acceleration on line 5. This is imperative for an ac-
curate parallel implementation, and a necessity that may have
an effect on performance. Other performance considerations
in the “calculateInfluence” method arise, particularly shared
memory synchronization and consistency as the acceleration
is updated with each call probe by probe, and acceleration
must be available to other parallel threads.

In addition,
The updateAcceleration function also reveals a gran-

ularity problem for parallel computation- i.e. which “for”
loop should be parallelized? The author executed preliminary
benchmarks on separate OpenMP implementations of outer
(line 3), middle (line 4), and inner (line 6) “for” loop paral-
lelization. The most appropriate parallel implementation was
revealed to be the outer loop implementation, boasting the least
wasted computation time spent on waiting and communication.
The modified version of the updateAccel function used in this
study is shown in Listing 2.

To preserve benchmarking data for later analysis, the author
created a database logging system as an extension of previous
logging systems of the CFO algorithm. The database logging
system stores input parameters to the algorithm, interpreted
and calculated parameters (from PF-CFO, if applicable) and
finally the runtime of various sections of execution. The
database contains nearly complete runtime information for the
algorithm including various timings and counts. All figures and
metrics are calculated from the total runtime of the algorithm.

Listing 1: updateAcceleration function
1 void u p d a t e A c c e l e r a t i o n (i n t j){
2 i n t p , i , k ;
3 f o r (p = 0 ; p < Np ; p ++) {
4 f o r (i = 0 ; i < Nd ; i ++) {
5 A[p] [i] [j] = 0 ;
6 f o r (k = 0 ; k < Np ; k ++) {
7 i f (k != p) {
8 c a l c u l a t e I n f l u e n c e (p , i , k , j) ;
9 }

10 }
11 }

https://gitlab.com/central-force-optimization/oo-central-force-optimization/tree/OpenMP
https://gitlab.com/central-force-optimization/oo-central-force-optimization/tree/OpenMP

12 }
13 }

Listing 2: updateAccel as Modified for the Xeon Phi
void u p d a t e A c c e l e r a t i o n (i n t j){

i n t p , i , k ;

pragma omp p a r a l l e l d e f a u l t (none)
p r i v a t e (sumSQ , denom , numera to r , a lpha ,
be t a , p , i , j , k)
{

pragma omp f o r s c h e d u l e (dynamic)
f o r (p = 0 ; p < Np ; p ++) {

f o r (i = 0 ; i < Nd ; i ++) {
A[p] [i] [j] = 0 ;
f o r (k = 0 ; k < Np ; k ++) {

i f (k != p) {
c a l c u l a t e I n f l u e n c e (p , i , k , j) ;

}
}

}
}

}
}

Along with the database logging capabilities, the author
also modified the CFO implementation to accept command
line input for various CFO parameters, and an option to run
PFCFO prior to executing the CFO algorithm, and set certain
parameters from the previous PFCFO algorithm. Among other
options is the ability to set available threads equal to Np, which
is used on the Xeon Phi since it is the architecture capable of
supporting up to 226 threads.

Benchmarking the performance of a metaheuristic requires
testing functions, and thus this research tested 21 previously
studied test functions for the CFO algorithm. These test func-
tions are described in I. The CFO algorithm was also compiled
for native execution on the Intel Xeon Phi coprocessor and
evaluated for dimensions Nd = {10, 20, 30}, and for threads
10− 240 in intervals of 10. A final run of the CFO algorithm
is executed on the Xeon Phi where the number of threads is
equal to the optimal Np for each test function.

IV. RESULTS

A. OpenMP Results

Results from this study are grouped into two distinct groups,
labeled groups A and B. This grouping is to facilitate the
discussion of each distinct test function against other functions
in the testing set. Test functions are grouped by relative
performance increases due to thread count and dimensions.
The intuition behind this grouping can be seen in table II,
which shows the optimal Np and γ (given a Nd) for every test
function. Table II is the result of running PF-CFO algorithm
on all test functions, logging optimal Np and γ values, and
benchmarking parallel CFO. Further, this table shows the

group of each test function. Those with higher optimal Np
are in group B, while lower Np values overall are placed in
group A. Function f23 is placed in group B as its performance
is closer to those in said group.

Figs. 1, 3 and 5 show the speedup and efficiency of the test
functions in group A given the dimensions Nd = 10, 20, 30.
Fig.1a shows the group A’s sublinear speedup at Nd = 10,
hitting a high of around 10 threads, with a speedup plateau for
all functions beginning at 12 threads, leading to a maximum
speedup of around 4.5 for this figure. The corresponding
efficiency for group A at Nd = 10, Fig. 1b shows a steady
drop of efficiency dropping to around 0.2 at 12 threads. In
contrast, Fig. 2 shows a much higher speedup of around 7.5
for the majority of test functions, boasting somewhat linear
speedup plateauing around 12 threads. Group B also shows
better efficiency for all test functions, remaining greater than
0.5 for threads 1-12.

For Nd = 20, figure 3 shows that group A exhibits near
linear speedup until a large spike in speedup after six threads
for three separate functions. By 12 threads, most functions
exhibit close to linear speedup. Fig. 4 shows a similar close to
linear speedup, with efficiency greater than 0.75 until around
12 threads. Group B also exhibits a large spike at six threads
for the majority of functions in the group, and a larger spike
for one function resulting in the highest speedup of around 18
at 10 threads.

At Nd = 30, figure 5 shows speedup and efficiency of group
A, and Fig. 5a exhibits the highest speedup in the study of
around 35 at 12 threads. There is still a speedup spike for most
functions at six threads, and further trends upwards in speedup
for most functions. The corresponding graph of group A’s
efficiency shows superlinear speedup for all but three functions
by 16 threads. Fig. 6 shows similarly impressive results for
Group B, resulting in superlinear speedup for the majority of
the functions as well.

Overall, both groups experienced either close to linear
speedup, or superlinear speedup for some specific functions for
higher values of Nd. The majority of test functions across both
groups maintained efficiency values of 0.5 or above given Nd
of 20 and above. Further, the speedup and efficiency of both
groups increased at higher values of Nd. Group B performed
consistently better at Nd = 20, while group A achieved better
results for a select set of functions.

B. Xeon Phi Results

For consistency, the following benchmarks of the Intel Xeon
Phi coprocessor have been similarly split into groups A and
B. Both groups contain the same test functions as previously
noted.

Although Speedup and Efficiency values are calculated
against a serial run for a program, the Xeon Phi is calculated
against a serial run on the host system, which may influence
the efficiency measure as the Xeon Phi threads are not as
powerful as those on the host system.

Test function performance on the Xeon Phi for Nd = 10 is
relatively poor. Group A achieves minimal speedup, at most 2,

Function index Function Name Formula

f1 Sphere f(x) =

Nd∑
i=1

x2i

f2 Rastrigin f(x) = 10Nd +

Nd∑
i=1

[x2i = 10 cos(2πxi)]

f3 Griewank f(x) =

Nd∑
i=1

x2i
4000

−
Nd∏
i=1

cos

(
xi√
i

)
+ 1

f4 Rosenbrock f(x) =

Nd−1∑
i=1

[100(xi+1 − x2i)2 + (xi − 1)2]

f5 Ackley f(x) = −a exp
(
−b
√

1
Nd

∑Nd
i=1 x

2
i

)
− exp

(
1

Nd

∑Nd
i=1 cos(cxi)

)
+ a+ exp(1)

f6 Schwefel 222 f(x) = −

Nd∑
i=1

|xi|+
Nd∏
i=1

f7 Lunacek f = −

min
Nd∑

i=1

(xi − u1)2, d ∗Nd + s ∗

Nd∑
i=1

(xi − u2)

+ 10 ∗
Nd∑
i=1

1− cos(2π(xi − u1))

,

where d = 1, s = 1− 1

2
√

Nd+20−8.2
, u1 = 2.5, u2 = −1

√
u2
1−d

s

f8 Ridge f(x) =

Nd∑
i=1

(

i∑
k=1

xk)
2

f9 Schaffer’s F7 f(x) = −
Nd−1∑
i=1

(
1

Nd − 1

√
x2i + x2i+1 sin(50 ∗

√
x2i + x2i+1

0.2
)

)2

f10 Beale f(x) = (1.5− x1 + x1x2)2 + (2.25− x1 + x1x22)
2 + (2.625− x1 + x1x32)

2

f11 Booth f(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

f12 Bulkin f(x) = 100
√
|x2 − 0.01x21|+ 0.01|x1 + 10|

f13 6 Hump Camel f(x) =

(
4− 2.1x21 +

x4
1
3

)
x21 + x1x2 + (−4 + 4x22)x

2
2

f14 Easom f(x) = − cos(x1) cos(x2) exp
(
−(x1 − π)2 − (x2 − π)2

)
f15 Goldstein-Price f(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)]× [30 + (2x1 − 3x2)2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)]

f16 Levi f(x) = sin2(πwi) +
∑Nd−1

i=1 (wi − 1)2[1 + 10 sin2(πwi + 1)] + (wd − 1)2[1 + sin2(2πwd)], where wi = 1 + xi−1
4

for all i = 1, . . . , d

f17 Matya f(x) = 0.26(x21 + x22)− 0.48x1x2

f18 Modified Double Sum f = −
Nd∑
i=1

i+1∑
k=1

(xk − (k + 1))2

f19 Whitley f(x) =

Nd∑
i=1

Nd∑
k=1

[100 ∗ x2i − x2k]
2

4000

f20 Rana f(x) = −
([
x1 sin(

√
|x2 + 1− x1|] cos

√
|x2 + 1− x1|

]
+
[
(x2 + 1) cos(

√
|x2 + 1− x1|) sin(

√
|x2 + 1− x1|)

])
f21 Schwefel f(x) = 418.9829Nd −

Nd∑
i=1

xi sin(
√
|xi|)

TABLE I: Test Functions

(a) Group A Speedup (b) Group A Efficiency

Fig. 1: Group A test functions for Nd = 10

while group B achieves a more consistent speedup of around
2.5 for many more test functions than in group A.

At Nd = 20, figure 9 shows that group A continues its trend
of scattered speedup, with the majority exhibiting speedup of

1−2, and one function exhibiting a speedup of 8. Fig.10 shows
group B exhibits consistently higher speedup values for most
functions, topping off at 6 to 9.

At Nd = 30, figure 11 exhibits relatively flat speedup after

Function index Np given Nd = 10 Np given Nd = 20 Np given Nd = 30 γ Group

f1 20 40 60 0.5 A

f2 40 80 120 0.5 A

f3 20 40 60 0.5 A

f4 40 80 120 0.75 A

f5 120 160 180 1.0 B

f6 20 40 60 0.5 A

f7 40 80 120 0.8 A

f8 120 160 180 0.5 B

f9 120 160 180 1.0 B

f10 60 120 180 0.6 B

f11 120 160 180 0.65 B

f12 120 160 180 1.0 B

f13 40 80 120 0.65 A

f14 120 160 180 0.5 B

f15 40 80 120 0.25 A

f16 120 160 180 0.55 B

f17 120 160 180 0.5 B

f18 20 160 180 0.75 A

f19 40 80 120 0.55 A

f20 120 160 180 0.6 B

f21 100 160 180 0.9 B

TABLE II: Optimal Np and γ values

(a) Group B Speedup (b) Group B Efficiency

Fig. 2: Group B test functions for Nd = 10

50 threads, with one outlier increasing to a speedup of 11 at
200 threads. In contrast to group A, figure 12 shows group B
climbing in speedup in a step-like manner for all threads.

As for the Xeon Phi’s relatively low speedup compared to
the host system’s performance, the discrepancy may come
from the Xeon Phi architecture’s lack of memory. Parallel
CFO’s shared memory synchronization and shared memory
access is discussed earlier, and may have had an affect on the
Xeon Phi’s performance

Further, the Xeon Phi implementation is simply a native
execution on the coprocessor, and the algorithm may be better
suited for an offloading implementation where the coproces-
sors are only invoked for particularly parallel portions of

execution.
From previous figures, one can see that the speedup for each

test function begins flattening at different points, particularly
on the Xeon Phi. The plateauing of performance along with the
updateAcceleration (Fig. 1) function’s outer loop paralleliza-
tion implies a direct relationship between Np and speedup.
Further, given that each test function was benchmarked with
increasing values of Nd and optimal Np (i.e. increasing with
each Nd), it is fruitful to investigate the influence of Np and
speedup.

Fig. 13 is a scatter plot of calculated optimal Np values
for each function vs maximum speedup after benchmarking
these functions on the Xeon phi. There is direct relationship

(a) Group A Speedup (b) Group A Efficiency

Fig. 3: Group A test functions for Nd = 20

(a) Group B Speedup (b) Group B Efficiency

Fig. 4: Group B test functions for Nd = 20

(a) Group A Speedup (b) Group A Efficiency

Fig. 5: Group A test functions for Nd = 30

(a) Group B Speedup (b) Group B Efficiency

Fig. 6: Group B test functions for Nd = 30

(a) Group A Speedup for Xeon Phi (b) Group A Efficiency for Xeon Phi

Fig. 7: Group A test functions for Nd = 10

(a) Group B Speedup for Xeon Phi (b) Group B Efficiency for Xeon Phi

Fig. 8: Group B test functions for Nd = 10

(a) Group A Speedup for Xeon Phi (b) Group A Efficiency for Xeon Phi

Fig. 9: Group A test functions for Nd = 20

(a) Group B Speedup for Xeon Phi (b) Group B Efficiency for Xeon Phi

Fig. 10: Group B test functions for Nd = 20

(a) Group A Speedup for Xeon Phi (b) Group A Efficiency for Xeon Phi

Fig. 11: Group A test functions for Nd = 30

(a) Group B Speedup for Xeon Phi (b) Group B Efficiency for Xeon Phi

Fig. 12: Group B test functions for Nd = 30

Fig. 13: Np vs Speedup Thread Per Probe

between Np and speedup, with the exception of the functions
F13, F15 and F23, all of which are in group A.

V. CONCLUSION AND FUTURE WORK

This study has shown that all test functions studied exhibited
near linear, and sometimes super linear speedup on the host
system with highs of 20 speedup for a large portion of group
A test functions, and a maximum speedup of 35 for one
test function. For both groups on the host system, speedup
spiked when the thread count was equal to physical cores,
but plateaued when the system was given more threads. This
suggests that the algorithmic performance can be increased
using OpenMP parallelization, though the thread count should
never be greater than the physical cores available.

The native implementation for the Intel Xeon Phi architec-
ture exhibited sub-linear speedup, but achieved up to 10 times
speedup as compared to serial execution on the host system.
The author added insights into the relationship between Nd,

Np and speedup by comparing groups A and B over both
architectures, and found that thread subscription may have an
affect on performance of higher dimensions. Both architec-
tures performed faster per thread given higher dimensional
decision space as well as Np, and the Xeon Phi architecture
implementation has shown to have room for future work.

Although the benchmarks on the host system show that this
parallel implementation is capable of linear and at times super
linear speedup, there is further work that will contribute to
the growing literature on CFO including the implementation
of CFO using other frameworks like Cilk, Threaded Building
Blocks, or MPI and comparing CFO with variants of other
parallelized population-based metaheuristic algorithms.

REFERENCES

[1] R. A. Formato, “Central force optimization: A new metaheuristic with
applications in applied electromagnetics,” Progress in Electromagnetics
Research, PIER 77, pp. 425–491, 2007. [Online]. Available: http:
//www.jpier.org/PIER/pier.php?paper=07082403

[2] R. Green, L. Wang, and M. Alam, “Training neural networks using
Central Force Optimization and Particle Swarm Optimization: Insights
and comparisons,” Expert Systems with Applications, vol. 39, pp.
555–563, January 2012. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0957417411010086

[3] R. Green, L. Wang, M. Alam, and R. Formato, “Central Force
Optimization on a GPU: A case study in high performance
metaheuristics using multiple topologies,” in IEEE Congress on
Evolutionary Computation, New Orleans, Los Angeles, June 2011,
pp. 550–557. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=5949667

[4] R. S. Sinha and S. Singh, “Optimization Techniques on GPU: A Survey,”
in International Multi Track Conference on Science, Engineering &
Technical Innovations, Jalandar, India, June 2014.

[5] R. Green, L. Wang, M. Alam, and R. A. Formato, “Central force opti-
mization on a GPU: A case study in high performance metaheuristics,”
Journal of Supercomputing, vol. 62, pp. 378–398, October 2012.

[6] S. Singh, J. Kaur, and R. Sinha, “A Comprehensive Survey on Various
Evolutionary Algorithms on GPU,” in International Conference on
Communication, Computing and Systems, Ferozepur, Punjab, India,
August 2014.

[7] E. Ahmed, K. R. Mahmoud, S. Hamad, and Z. T. Fayed, “CFO Parallel
Implementation on GPU for Adaptive Beam-forming Applications,”
International Journal of Computer Applications, vol. 70, no. 12, pp.
10–16, May 2013.

http://www.jpier.org/PIER/pier.php?paper=07082403
http://www.jpier.org/PIER/pier.php?paper=07082403
http://www.sciencedirect.com/science/article/pii/S0957417411010086
http://www.sciencedirect.com/science/article/pii/S0957417411010086
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5949667
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5949667

[8] R. A. Formato, “Central Force Optimization: A New Nature Inspired
Computational Framework for Multidimensional Search and Opti-
mization,” in NICSO. Springer-Verlag, 2007, pp. 221–238. [Online].
Available: http://www.springerlink.com/content/t357063336g229g0/

[9] ——, “Pseudorandomness in Central Force Optimization,” Computing
Research Repository, vol. abs/1001.0317, 2010. [Online]. Available:
http://arxiv.org/abs/1001.0317

[10] ——, “Central Force Optimization with variable initial probes and
adaptive decision space,” Applied Mathematics and Computation,
vol. 217, no. 21, pp. 8866–8872, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0096300311005315

[11] ——, “Parameter-Free Deterministic Global Search with Central
Force Optimization,” Computing Research Repository, vol.
abs/1003.1039, 2010. [Online]. Available: http://www.springerlink.
com/content/d45u6135702015wq/

[12] M. Chao, S. Z. Xin, and L. S. Min, “Neural network ensembles based
on copula methods and Distributed Multiobjective Central Force Opti-
mization algorithm ,” Engineering Applications of Artificial Intelligence
, vol. 32, pp. 203–212, 2014.

[13] N. F. Shaikh and D. D. Doye, “An Adaptive Central Force Optimization
(ACFO) and Feed Forward Back Propagation Neural Network (FFBNN)
based iris recognition system ,” Journal of Intelligence and Fuzzy
Systems, vol. 30, no. 4, pp. 2083–2094, March 2016.

[14] R. A. Formato, “Improved CFO Algorithm for Antenna Optimization,”
Progress in Electromagnetics Research, PIER B, vol. 19, pp. 405–425,
2010. [Online]. Available: http://www.jpier.org/PIERB/pier.php?paper=
09112309

[15] ——, “Central Force Optimization Applied to the PBM Suite of Antenna
Benchmarks,” Computing Research Repository, vol. abs/1003.0221,
2010. [Online]. Available: http://arxiv.org/abs/1003.0221

[16] A. Haghighi and H. M. Ramos, “Detection of Leakage Freshwater
and Friction Factor Calibration in Drinking Networks Using Central
Force Optimization,” Water Resources Management, vol. 26, no. 8, pp.
2347–2363, March 2012. [Online]. Available: http://rd.springer.com/
article/10.1007/s11269-012-0020-6

[17] A. Jabbary, H. T. Podeh, H. Younesi, and A. H. Haghiabi, “Develop-
ment of central force optimization for pipe-sizing of water distribution
networks,” Water Science and Technology: Water Supply, vol. 16, no. 5,
pp. 1398–1409, 2016.

[18] S. M. J. Moghaddas and H. M. Samani, “Application of central force
optimization method to design transient protection devices for water
transmission pipelines,” Modern Applied Science, vol. 11, no. 3, p. 76,
2016.

[19] B. Wilkinson and M. Allen, Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1999.

http://www.springerlink.com/content/t357063336g229g0/
http://arxiv.org/abs/1001.0317
http://www.sciencedirect.com/science/article/pii/S0096300311005315
http://www.springerlink.com/content/d45u6135702015wq/
http://www.springerlink.com/content/d45u6135702015wq/
http://www.jpier.org/PIERB/pier.php?paper=09112309
http://www.jpier.org/PIERB/pier.php?paper=09112309
http://arxiv.org/abs/1003.0221
http://rd.springer.com/article/10.1007/s11269-012-0020-6
http://rd.springer.com/article/10.1007/s11269-012-0020-6

	Introduction
	Central Force Optimization
	OpenMP
	Intel Xeon Phi

	Methodology
	Results
	OpenMP Results
	Xeon Phi Results

	Conclusion and Future Work
	References

