
© CCSC, (2017). This is the author's version of the work. It is posted here by permission of CCSC for your
personal use. Not for redistribution. The definitive version was published in The Journal of Computing
Sciences in Colleges, 33, 1, October 2017, http://dl.acm.org/.”.

FOCUS	DRIVEN	DEVELOPMENT:	THE	“COULD”	AND	“SHOULD”	OF	SOFTWARE	
DESIGN		
	
Robert	Green	
Department	of	Computer	Science	
Bowling	Green	State	University	
Bowling	Green,	OH	43403	
greenr@bgsu.edu	
	
ABSTRACT	
It	 is	 not	 uncommon	 for	 software	 developers	 to	 work	 on	 significant	 software	
products	 that	 can,	 for	 the	most	part,	be	 thought	of	 as	"spaghetti	 code"	 -	 code	 that	
appears	to	be	haphazardly	designed	with	little	thought	to	structure	and	technique.	
Unsurprisingly,	 it	 is	never	the	 intention	of	a	developer	to	create	spaghetti	code.	 In	
the	 beginning	 of	 a	 project,	 high	 quality	 code	 is	 commonly	 developed	 with	 great	
success.	 Yet,	 as	 the	 project	 continues,	 the	 developer	 begins	 to	 lose	 focus	 on	
important	aspects	of	 the	software	(like	design	and	readability)	 and	begins	making	
poor	choices	under	the	pressure	of	time,	money,	etc.	This	paper	explores	this	idea	of	
"focus"	 in	 the	 development	 process	 and	 how	 a	 strong	 focus	 on	 the	 essentials	 -	
Location,	 Function,	 Naming,	 Communication,	 and	 Refactoring	 -	 can	 lead	 to	 better	
software	design.	
	
INTRODUCTION	

In	an	article	in	the	Harvard	Business	review,	Greg	McKeown	speaks	about	the	
failure	of	successful	people	in	becoming	very	successful	due	to	the	Clarity	Paradox,	
or	 the	 “Undisciplined	 Pursuit	 of	 More”	 as	 opposed	 to	 the	 “Disciplined	 Pursuit	 of	
Less.”	[3,	4]	What	is	this	paradox?	Stated	concisely,	the	Clarity	paradox	teaches	that	
focus	leads	to	success,	success	leads	to	opportunities,	opportunities	lead	to	diffused	
efforts,	and	diffused	efforts	lead	to	failure.	The	key	factor	in	this	process	is	focus	–	A	

strong	focus	brings	
clarity	and	success	
while	 diminished	
focus	 (or	
distraction)	 leads	
to	 diffused	 efforts	
and	failure.	 In	 fact,	
at	any	point	in	this	
process,	 a	 healthy	
dose	 of	 focus	 can	
re-establish	
success	(see	Fig.	1)	
through	 the	

application	of	McKeown’s	core	principles	(Use	more	extreme	criteria,	Asking	“What	
is	 Essential?”,	 and	 Minding	 the	 endowment	 effect).	 Considering	 this	 concept,	 the	
author	has	come	to	realize	that	 the	core	of	 these	principles	(focus)	also	applies	 to	
software	engineering.	Truly,	many	of	the	principles	that	should	be	followed	in	order	

	
Figure	1.	A	graphical	depiction	of	the	Clarity	Paradox	as	defined	by	
Mckeown1.	

	

Focus

Success

New Opportunities

Diffused Efforts

Failure

Re-Focus

Re-Focus

© CCSC, (2017). This is the author's version of the work. It is posted here by permission of CCSC for your
personal use. Not for redistribution. The definitive version was published in The Journal of Computing
Sciences in Colleges, 33, 1, October 2017, http://dl.acm.org/.”.

to	 design	 and	 develop	 excellent	 software	 are	 only	 a	matter	 of	 good	 focus.	 Stated	
another	 way,	 this	 issue	 of	 focus	 is	 really	 a	 matter	 of	 what	 “could”	 be	 done	 as	
opposed	to	what	“should”	be	done	when	designing	and	implementing	software.	
	

In	the	arena	of	Software	Engineering,	what	constitutes	either	a	good	or	a	bad	
software	 design	 is	 a	 hot	 topic,	 particularly	 when	 teaching	 students	 in	 an	
undergraduate	course.	The	differences	between	good	and	bad	design	are	not	always	
obvious	at	 first	(bad	design	almost	always	seem	logical!),	but	after	some	pressing,	
students	 begin	 to	 pick	 apart	 flaws	 that	 have	 crept	 into	 an	 otherwise	 promising	
design,	 resulting	 in	 low	 cohesion,	 high	 coupling,	 and	 repeated	 code.	 After	 an	 in-
depth	 conversation	 regarding	 these	 issues,	 students	 are	 brought	 back	 to	 the	 fact	
that	 they	have	 really	 “discovered”	 two	core	principles	 that	 are	necessary	 for	good	
software	design:	The	SRP	 (Single	Responsibility	Principle)	and	DRY	 (Don’t	Repeat	
Yourself)	 [6].	 After	 some	 consideration,	 it	 seems	 that	 these	 two	 core	 principles	
share	 a	 singular	 foundation	 that	 can	 be	 summed	up	 in	 a	 single	word:	Focus.	 This	
idea	 has	 also	 been	 brought	 back	 to	 the	 forefront	 through	 a	 newly	 developed	
Software	Engineering	practice	called	YOGA	which	presents	“Meditating	on	Code”	as	
a	key	principle	[7].	

It	is	when	a	design	or	implementation	loses	its	focus	and	software	engineers	
start	 asking	 what	 “could”	 be	 done	 instead	 of	 what	 “should”	 be	 done	 that	 these	
principles	 are	 violated,	 typically	 for	 the	 sake	 of	 progress,	 results,	 time,	 money,	
and/or	 a	 lack	 of	 skill.	 In	 fact,	 simply	 adding	 “focus”	 to	 the	 development	 process	
would	help	to	create	both	beautiful	[1,	5]	and	clean	[2]	code!	That	is	why,	when	the	
author	 begins	 to	 teach	 these	 topics,	 he	 exhorts	 his	 students	 to	 follow	 the	 core	
principle	 of	 Focus-driven	 Design/Development	 when	 they	 are	 designing	 and	
implementing	software.	
	
FOCUS	DRIVEN	DEVELOPMENT	

Before	 considering	 these	 principles,	 consider,	 as	 an	 example,	 a	 potentially	
common	 code	 design	 that	 arises	 in	 many	 professional	 and	 student	 projects.	 A	
developer	is	working	on	a	project	using	some	language,	say	C++,	and	a	namespace	is	
created	 that	 is	 simply	 called	 “Utils”.	 As	 one	might	 expect,	 the	 class	 is	 intended	 to	
hold	utility	functions	that,	quite	frankly,	do	not	fit	well	anywhere	else.	Things	start	
off	 well	 –	 in	 this	 case,	 the	 class	 holds	 utility	 functions	 for	 loading	 system	
configurations	 for	 evaluation	 and	 study.	 With	 a	 small	 number	 of	 functions,	
navigating	 the	 code	 is	 easy.	 But	 soon,	 the	 class	 is	 populated	 with	 methods	 for	
converting	 decimal	 numbers	 to	 binary,	 manipulating	 strings,	 performing	
mathematics,	 getting	 timestamps,	 and	 processing	 command	 line	 arguments.	
Whether	 done	 out	 of	 convenience	 or	 ease,	 this	 results	 in	 a	 piece	 of	 code	 with	
diffused	efforts	or	a	lack	of	focus.	A	short	list	of	utility	functions	has	now	become	a	
long,	mish-mashed	list	of	functions	buried	in	a	single	namespace.	And	now,	though	
the	 code	 still	 compiles	 and	 performs	 well,	 the	 “Utils”	 namespace	 is	 filled	 with	 a	
conglomeration	of	methods	and	functions	that	must	be	searched	and	scoured	every	
time	that	a	method	is	needed.	
	

© CCSC, (2017). This is the author's version of the work. It is posted here by permission of CCSC for your
personal use. Not for redistribution. The definitive version was published in The Journal of Computing
Sciences in Colleges, 33, 1, October 2017, http://dl.acm.org/.”.

What	was	the	real	problem	in	the	design	and	implementation	of	this	names	
pace	 (other	 than	 the	 hap-hazard	 nature	 of	 the	 development)?	 A	 lack	 of	 focus!	
Consider	the	steps	that	this	process	followed	in	Table	1:	

	
1. The developer was initially focused and, when confronted with the need to

design his software well, he created a new namespace to hold “Utility” functions.
Due to his focus, he encountered success (In this case, a new namespace was
created that held related functions, was easy to use, and was easy to navigate);

2. The success of this new design brought with it the opportunity to store more
functions inside of the same namespace that did not quite fit anywhere else;

3. This opportunity led the developer to store all utility functions inside the utility
namespace, leading to a code design that was no longer focused. Instead, the
code contained many functions that were only loosely related as utilities and
was now, in fact, confusing and had lost its focus;

4. Finally, the code is now left in a state of failure, where every developer has to

search, scroll, and scrounge for the desired function.
	
Table	1.	A	short	listing	of	potential	thoughts	that	a	developer	may	have	while	creating	code	that	leads	to	

code	that	lacks	focus.	

	 Step	 Developer’s	Thoughts	 Impact		
1	

Focus	and	clarity	
lead	to	success	

“Awesome!	I’ll	 just	create	a	namespace	
to	 hold	 these	 extra	 functions	 even	
though	I	wasn’t	sure	where	they	should	
go.”	

Load	system	models	and	data.	

2	 Success	leads	to	
more	

opportunity	

“I	 really	don’t	want	 to	write	 any	 extra	
code.	 I	 bet	 I	 can	 just	 throw	 this	 new	
function	 here	 and	 there	 won’t	 be	 any	
issues.”	

A	 “Utils”	 namespace	 could	 easily	
hold	 many	 utility	 functions	 of	 all	
types	

3	 Increased	
opportunity	leads	
to	diffused	efforts	
and	loss	of	focus	

“What	was	that	function	I	need	again?”	
(asked	 concurrently	 with	 scrolling	
down	a	long	list	of	function	definitions)	

The	 “Utils”	 namespace	 is	 quickly	
filled	with	unrelated	functions	that	
perform	 multiple	 tasks	 that	 are	
listed	in	varying	order.	

4	

Failure	

“Where	 is	 that?	 What	 does	 it	 do?”	
(followed	 by	 scrolling	 and	 multiple	
uses	of	“Ctrl+F”)	

The	 “Utils”	 namespace	 must	 be	
searched	and	scoured	for	each	new	
need	 or	 change,	 quickly	 becoming	
difficult	to	work	with.	

	
This	process	could	have	easily	been	stopped	through	the	addition	of	focus	at	any	

step	 in	 the	process.	For	 instance,	 if	 the	developer	 simply	asked,	 “Is	 this	new	Utils	
namespace	 focused	 on	 one	 function/process/purpose?”	 the	 answer	 would	 have	
quickly	been	 found	 to	be	 “no”,	 and,	 the	namespace	may	have	been	 refactored	 into	
“CommandLineUtils”	 or	 “StringUtils”	with	 extra	 namespaces/classes	 being	
added	 to	 capture	 new	 functionality.	 In	 this	 case,	 a	 simple	 change	 of	 name	would	

© CCSC, (2017). This is the author's version of the work. It is posted here by permission of CCSC for your
personal use. Not for redistribution. The definitive version was published in The Journal of Computing
Sciences in Colleges, 33, 1, October 2017, http://dl.acm.org/.”.

most	likely	have	prevented	this	implementation	from	moving	into	a	state	of	failure.	
In	any	 case,	 the	problem	could	have	easily	been	 solved	by	applying	 the	principles	
espoused	by	McKeown.	In	terms	for	software	development,	these	three	principles	of	
Essentialism	can	be	modeled	through	the	five	principles	of	Focus-driven	Design	and	
Development:	
	

1. Focus	on	the	location.	 In	the	process	of	designing	and	 implementing	code,	
developers	often	seek	the	most	convenient	location	to	implement	a	function	
or	method.	This	 is	 the	problem	brought	 forth	 in	 the	previous	example.	The	
question	should	never	be	“Where	could	I	put	this	code?”	Instead,	the	question	
should	use	the	more	extreme	criteria	of	“What	is	the	best	place	that	I	should	
put	this	code?”	The	difference	is	subtle,	but	“could”	versus	“should”	is	the	fine	
line	between	convenience	that	leads	to	failure	and	focused	effort	that	leads	to	
success.		
	

2. Focus	on	 the	 function.	 The	 task	 that	 a	method	or	 function	 completes,	 the	
functionality	of	a	class,	even	the	logic	within	a	simple	if-statement	should	all	
be	 highly	 focused	 and	 should	 accomplish	 a	 single	 task	 or	 relate	 to	 a	 single	
model	(This	is	commonly	referred	to	as	the	SRP).	If	the	function	of	the	code	is	
both	correctly	and	highly	 focused,	 the	resulting	design,	or	 form,	of	 the	code	
developed	will	be	successful.	It	is	never	a	question	of	“What	could”,	but	“What	
should	 this	 function	 do?”	 Perhaps	 the	 epitome	 of	 this	 principal	 is	 the	 old	
adage	“Form	follows	function”	or	simply	asking,	"What	is	essential?"		
	
One	 objection	 that	 may	 rise	 against	 this	 idea	 could	 be,	 “But	 isn’t	 this	 just	
recounting	the	SRP?”	No.	Simply	stated,	SRP	inherits	Focus.	The	main,	driving	
principle	behind	SRP	is	achieving	enough	Focus	to	have	the	clarity	of	thought	
to	use	the	SRP	well.	This	principle	 is	not	recounting	SRP,	 it	 is	revealing	the	
foundation	and	motivation	behind	the	principle.	
	

3. Focus	 on	 the	names.	 Just	 as	 form	 follows	 function,	 function	 often	 follows	
name	 [1].	 In	 other	 words,	 once	 a	 class,	 function,	 or	 method	 is	 named,	 all	
developers	 that	 read	 that	 code	 will	 make	 some	 type	 of	 inference	 and	 the	
perception	 of	 the	 code	 that	 “should”	 be	 contained	within	 it	will	 be	 forever	
changed.	 A	 name	 that	 is	 too	 generic	 –	 something	 like	 “Utils”	 –	 makes	
developers	wonder	what	 “could”	 fit	 inside,	 leading	 to	a	 class	or	namespace	
that	is	filled	with	errata,	congested	with	logic,	and	crowded	with	code.	On	the	
other	hand,	something	that	is	more	focused	–	like	“CommandLineUtils”	–	
forces	 developers	 to	 consider	 that	 only	 utility	 functions	 related	 to	 the	
command	line	“should”	be	included.	
	

4. Focus	on	Communication.	Regardless	of	what	code	does,	 the	number	one,	
absolutely	essential	responsibility	that	a	developer	has	is	creating	code	that	
can	 be	 maintained.	 This	 means	 that	 code	 must	 be	 readable	 and	
understandable	 to	 the	 generations	 of	 developers	 that	 will	 follow	 in	 their	

© CCSC, (2017). This is the author's version of the work. It is posted here by permission of CCSC for your
personal use. Not for redistribution. The definitive version was published in The Journal of Computing
Sciences in Colleges, 33, 1, October 2017, http://dl.acm.org/.”.

footsteps	 [1].	 The	 major	 question	 here	 is	 “What	 should	 this	 code	 mean	 to	
another	 developer?”	 as	 opposed	 to	 what	 “What	 could	 this	 code	 mean	 to	
another	developer?”	or	"What	does	this	code	mean	to	me?"	Peer	review	is	a	
very	 helpful	 tool	when	 asking	 these	 questions	 as	 it	 brings	 a	 clear,	 outside	
perspective.	 In	 short,	 code	must	 clearly	 communicate	 intent	 and	 logic	 to	 a	
broad	audience	and	future	generations.	
	

5. Focus	on	Refactoring.	Refactoring	 is	 the	key	 to	 restoring	 focus	as	 it	 is	 the	
best	 time	 to	 ask	 questions	 like	 “What	 should	 this	 function	 do?”,	 “Does	 this	
function	 or	 class	 do	 too	 much?”,	 and	 “What	 methods	 should	 this	
class/namespace	contain?”	As	developers,	there	should	never	be	any	fear	in	
removing	or	rewriting	code.	One	of	the	key,	though	soft,	metrics	of	whether	
or	 not	 your	 code	 is	 focused	 is	 the	 Fear	 Factor:	 How	 afraid	 is	 another	
developer	to	refactor	your	code?	 If	 the	major	response	 is	 terror	because	so	
much	of	the	design	and	the	code	will	have	to	change	and	no	one	understands	
what	 the	 code	 actually	 does,	 then	 it	 is	 definitely	 time	 to	 refactor;	 it	 is	
definitely	time	to	regain	your	code’s	focus.	If,	on	the	other	hand,	refactoring	
sounds	 like	 a	 piece	 of	 cake	 or	 a	walk	 in	 the	 park,	 your	 code	 is	most	 likely	
much	more	focused,	though	a	good	refactoring	never	hurt	anyone.	

	
CONCLUSIONS	

In	 the	 author’s	opinion,	 a	 lack	 of	 focus	 is	 a	major	 issue	 in	modern	 society.	
When	 the	 majority	 of	 computer	 scientists	 are	 constantly	 distracted	 by	 smart	
phones,	 emails,	 social	 networks,	 and	 the	 like,	 it	 is	 difficult	 to	 truly	 spend	 time	
focusing	on	a	problem	or	a	task,	thus	completing	it	as	successfully	as	possible.	This	
tends	to	play	out	in	while	developing	code	–	software	engineers	lose	focus	on	what	
they	should	be	doing	and,	instead,	rush	to	complete	deliverables.	Perhaps	software	
developers	 and	 engineers	 can	 take	 a	 cue	 from	 McKeown	 and	 spend	 more	 time	
focusing	on	the	code.	
	
REFERENCES	
	
[1] Green,	R.,	Ledgard,	H.,	Coding	Guidelines:	Finding	the	Art	in	the	Science,	

Communications	of	the	ACM,	54	(12),	57-63,	2011.	
[2] Martin,	R.,	Clean	Code:	A	Handbook	of	Agile	Software	Craftsmanship,	Upper	Saddle	

River,	NJ:	Prentice	Hall	PTR,	2008.	
[3] McKeown,	G,	The	Disciplined	Pursuit	of	Less,	2012,	

http://blogs.hbr.org/2012/08/the-disciplined-pursuit-of-less/	
[4] McKeown,	G.,	Essentialism:	The	Disciplined	Pursuit	of	Less,	London,	England:	

Virgin	Books,	2014.	
[5] Oram,	A.,	Wilson,	G.,	Beautiful	Code:	Leading	Programmers	Explain	how	They	

Think,	Sebastopol,	CA,	O’Reilly	Media	Inc.,	2007	
[6] Pilone,	D.,	Miles,	R.,	Head	First	Software	Development,	Sebastopol,	CA:	O'Reilly	

Media	Inc.,	2007.	
[7] David	Weiss,	YOGA:	A	Software	Development	Process	Based	On	Ancient	Principles.	

SIGSOFT	Softw.	Eng.	Notes,	40	(4):5-5,	2015.	

